Chelation-Assisted Intermolecular Hydroacylation: Direct Synthesis of Ketone from Aldehyde and 1-Alkene

Chul-Ho Jun,* Hyuk Lee, and Jun-Bae Hong Department of Chemistry, Yonsei University, Seoul 120-749, Korea

Received October 8, 1996

Activation of the aldehydic carbon-hydrogen bond by transition-metal complexes has especially received interest because of its relevance to organic synthesis through conversion of aldehyde into ketone (i.e., hydroacylation).¹ A negative consequence in the synthesis of ketone from aldehyde is decarbonylation in the acylmetal intermediate, formed by cleavage of the aldehydic carbonhydrogen bond.² There are limitations to attempts to solve decarbonylation for direct intermolecular hydroacylation by cyclometalation with a specially designed model compound³ or by stabilization of the complex by pressurization with carbon monoxide gas.⁴ An indirect method consisting of a few steps to make ketone from aldehyde has also been developed with carboxaldimine, which can be converted by catalytic reaction with 1-alkene into carboxketimines.⁵ This reaction is followed by hydrolysis under acid conditions to produce ketone. Until now, no practical direct intermolecular hydroacylation has been reported. Herein, we describe a one-step synthesis of ketone from aldehyde with the cocatalyst system of the transition-metal complex and 2-amino-3picoline.

In our experiment, 1-alkene **1** reacted with aldehyde **2** in toluene at 150 °C for 24 h under a mixture of 5 mol % of chlorotris(triphenylphosphine)rhodium (I) (**3**) and 20 mol % of 2-amino-3-picoline (**4**) as a cocatalyst based upon **2** (eq 1).⁶

Following the reaction, the corresponding hydroacylated product, ketone, was isolated by column chromatography. The reactions between various aldehydes and 1-alkenes were examined, and the results are shown in Table $1.^7$

The resulting hydroacylated ketones were linear in shape, not branched alkyl ketones. The reaction of a chiral olefin such as 4-vinylcyclohexene (**1g**) with benzaldehyde (run 7) affords the corresponding ketone **5g**,

Table 1.	Ligand-	Assisted	Interi	nolecula	r
Hvdroacvl	ation of	1-Alkene	with	Aldehvd	e ^a

Entry	<u>1-Aiken</u> R (1)	<u>1e</u>)	<u>Aldehyde</u> R' (2)	1	Hydroacylated Product (5)		Yield (%) ^b
1	n-C₄H9-	(1a)	\sim	(2a)	n-C ₆ H ₁₃ -CO-Ph	(5a)	72
2	n-C ₃ H ₇ -	(1b)			n-C₅H ₁₁ -CO-Ph	(5b)	75
3	н	(1c)			C ₂ H ₅ -CO-Ph	(5c)	92 ^c
4	t-C₄H ₉ -	(1d)			t-C₄H ₉ CH ₂ CH ₂ CO-Ph	(5 d)	68
5	n-C ₈ H ₁₇ -	(1e)			n-C ₁₀ H ₂₁ -CO-Ph	(5e)	74
6	PhCH2-	(1f)			PhCH ₂ CH ₂ CH ₂ CO-Ph	(5f)	83
7	\bigcirc	(1g)			CH ₂ CH ₂ CO-Ph	(5g)	67 ^d
8	C ₆ F ₅ -	(1h)			C ₆ F ₅ -CH ₂ CH ₂ CO-Ph	(5h)	90
9	n-C ₃ H7-	(1 b)	СН₃О-	(2b)	CH ₃ O-	(5i)	66
10			n-C ₆ H ₁₃ -	(2c)	n-C ₆ H ₁₃ -CO-n-C ₅ H ₁₁	(5j)	49
11			\frown -	(2d)	-CO-n-C ₅ H ₁₁	(5k)	67
12		<	Сн₂сн₂-	(2e)	(CH ₂) ₂ -CO-n-C ₅ H ₁₁	(5I)	67
13			t-C₄H9-	(2f)	t-C₄H9-CO-n-C5H11	(5m)	6

^{*a*} Aldehyde (0.44 mmol), 1-alkene (1.30 mmol), (PPh₃)₃RhCl (0.022 mmol), and 2-amino-3-picoline (0.086 mmol) in toluene (0.1 g) at 150 °C for 24 h. ^{*b*} Isolated yield after chromatographic isolation (hexane:ethylacetate = 5:2). ^{*c*} Benzene was used as a solvent. ^{*d*} [α]_D + 3.62 from 4-vinylcyclohexene of [α]_D + 1.08.

Table 2. Effect of 2-Amino-3-picoline (4) onHydroacylation of 1b with 2b^a

entry	mol % of 4	product ratio 5i:anisole	isolated yield (%) of 5i
1	0	0 ^b :100	0
2	10	58:42	14
3	20	85:15	57
4	50	85:15	70
5	70	90:10	80
6	100	93:7	83

^{*a*} Anisaldehyde (0.22 mmol), 1-pentene (1.08 mmol), (Ph₃P)₃RhCl (0.022 mmol) in THF (2 mL) at 100 °C for 60 h under different mol % of 2-amino-3-picoline based upon anisaldehyde. ^{*b*} 46% yield of anisole was obtained, determined by GC.

which retains an asymmetric center in a 3-cyclohexenyl group. Aliphatic aldehyde still showed comparable reactivity with the aromatic aldehyde (runs 10-12). The reaction of a sterically hindered aliphatic aldehyde such as *tert*-butyl aldehyde **2f** afforded a lower yield of ketone compared with those of primary and secondary aliphatic

 ^{(1) (}a) Schwartz, J.; Cannon, J. B. J. Am. Chem. Soc. **1974**, 96, 4721.
 (b) Lochow, C. F.; Miller, R. G. J. Am. Chem. Soc. **1976**, 98, 1281. (c)
 Vora, K. P.; Lochow, C. F.; Miller, R. G. J. Organomet. Chem. **1980**, 192, 257. (d) Isnard, P.; Denise, B.; Sneeden, R. P. A.; Cognion, J. M.; Durual, P. J. Organomet. Chem. **1982**, 240, 285. (e) Marder, T. B.; Roe, D. C.; Milstein, D. Organometallics **1988**, 7, 1451.

^{(2) (}a) McQuillin, F. J.; Parker, D. G.; Stephenson, G. R. Transition metal organometallics for organic synthesis, Cambridge University Press: Cambridge, 1991; p 306. (b) Kondo, T.; Tantayanon, S.; Tsuji, J.; Watanabe, Y. Tetrahedron Lett. **1989**, 30, 4137. (c) Ohno, K.; Tsuji, J. J. Am. Chem. Soc. **1968**, 90, 94. (e) Doughty, D. H.; Pignolet, L. H. J. Am. Chem. Soc. **1978**, 100, 7083. (f) Walborsky, H. M.; Allen, L. E. J. Am. Chem. Soc. **1971**, 93, 5465. (g) O'connor, J. M.; Ma, J. J. Org. Chem. **1992**, 57, 5075.

^{(3) (}a) Jun, C.-H. Organometallics 1996, 15, 895. (b) Jun, C.-H.; Lim,
Y.-G. Tetrahedron Lett. 1995, 36, 3357. (c) Lee, H.; Jun, C.-H. Bull.
Korean Chem. Soc. 1995, 16, 66. (d) Jun, C.-H. J. Organomet. Chem.
1990, 390, 361. (e) Suggs, J. W.; Wovkulich, M. J.; Cox, S. D.
Organometallics 1985, 4, 1101. (f) Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640.

^{(4) (}a) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. *J. Org. Chem.* **1990**, *55*, 1286. (b) Tsuji, Y.; Yoshii, S.; Ohsumi, T.; Kondo, T.; Watanabe, Y. *J. Organomet. Chem.* **1987**, *331*, 379.

^{(5) (}a) Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489. (b) Jun, C.-H.; Han, J.-S.; Kang, J.-B.; Kim, S.-I. J. Organomet. Chem. 1994, 474, 183. (c) Jun, C.-H.; Kang, J.-B.; Kim, J.-Y. J. Organomet. Chem. 1993, 458, 193. (d) Jun, C.-H.; Kang, J.-B.; Kim, J.-Y. Tetrahedron Lett. 1993, 34, 6431.

⁽⁶⁾ A mixture of 46.6 mg (0.44 mmol) of **2a**, 9.3 mg (0.086 mmol) of **4**, and 20 mg (0.022 mmol) of **3** was dissolved in toluene (0.1 g) in a 1 mL screw-capped vial. After the mixture was stirred for several minutes, 109.0 mg (1.30 mmol) of **1a** was added. The mixture was magnetically stirred for 24 h at 150 °C. The solution was concentrated to give a residue that was purified by column chromatography (hexane: EtOAc = 5:2, SiO₂) to give 60.1 mg of **5a** (72% isolated yield), which was characterized by spectroscopic analysis.

Scheme 1. Proposed Catalytic Cycle for Ligand-Assisted Hydroacylation (L = PPh₃)

 Table 3. Catalytic Activities of Some Transition Metal

 Complexes^a

entry	catalyst	additive ^b	isolated yield (%) hexanophenone ^c
1	(Ph ₃ P) ₃ RhCl		72
2	RhCl ₃ •xH ₂ O	PPh ₃	68
3	Rh(CO)(PPh ₃) ₂ Cl	-	16
4	$Ru_3(CO)_{12}$	$(CH_3)_3NO^d$	(10)
5	Ru(PPh ₃) ₃ Cl ₂	NaBH ₄ , PPh ₃	(9) ^e
6	Ir(CO)(PPh ₃) ₂ Cl) O
7	(Ph ₃ P) ₃ IrCl		0
8	$[(C_8H_{14})_2RhCl]_2$	PPh ₃	48
9		$(p-CH_3C_6H_4)_3P$	61
10		$(p-(CH_3OC_6H_4)_3P$	56
11		Čy ₃ P	38
12		(ČH ₃) ₃ P	0

^{*a*} Benzaldehyde (0.22 mmol), 1-pentene (1.08 mmol), transitionmetal complexes (0.022 mmol), and 2-amino-3-picoline (0.22 mmol) in THF (2 mL) at 100 °C for 40 h. ^{*b*} All phosphines added were 0.11 mmol. ^{*c*} Figures in parentheses were GC yield based upon benzaldehyde. ^{*d*} 0.066 mmol was added, and without additive, 3% of hexanophenone was formed. ^{*e*} Without additive, 1% of hexanophenone was formed.

aldehydes (run 13). This hydroacylation process is believed to proceed as illustrated in Scheme 1.

The first step might be condensation of aldehyde 2 and 2-amino-3-picoline (4) to generate aldimine 6 and H_2O . A carbon-hydrogen bond in 6 is cleaved by rhodium(I) in 3 to give an (iminoacyl)rhodium(III) hydride 7, which was previously found from the reaction of aldimine 6 and 3.8 Coordination of 1-alkene 1 to 7 and subsequent hydride insertion into 1-alkene in 8 leads to an (iminoacyl)rhodium(III) alkyl 9. Reductive elimination in 9 produces carboxketimine 10 with regeneration of catalyst 3. Hydrolysis of 10 with H₂O, previously generated from the condensation of 2 and 4, synthesizes products 5 and **4**. In this process, **4** and complex **3** act as catalysts. Linear alkyl ketones were obtained in this reaction through hydrometalation in 8 following anti-Markownikoff's rule, due to the steric congestion of the (iminoacyl)rhodium(III) complex system.

To identify the effect of **4**, different molar ratios of **4** were applied for hydroacylation of 1-pentene with 4-anisaldehyde (**2b**) under mild conditions (10 mol % of **3**, THF, 100 °C, 60 h) (Table 2).⁹

Without the addition of **4**, the decarbonylation product, anisole, was obtained exclusively in 46% yield (Table 2, run 1). With 10 mol % of **4**, 4'-methoxyhexanophenone (**5i**) was isolated in 14% yield along with a 10% yield of anisole. By increasing the concentration of **4** to 20 mol %, 50 mol %, 70 mol %, and 100 mol %, the ratio of **5i** to anisole was increased to 85:15, 85:15, 90:10, and 93:7. This result indicates that hydroacylation competes with the decarbonylation of aldehyde. The above results show that increasing the concentration of 2-amino-3-picoline also increases the probability of carbon-hydrogen cleavage of carboxaldimine.

A variety of organometallic compounds, with or without additives, were studied in the conversion of 1 into 5 at 100 °C for 40 h. This reaction requires the catalyst, 10 mol % of metal complex, and 100 mol % of 4 (Table 3). The complexes (PPh₃)₃RhCl, RhCl₃·H₂O with PPh₃, Rh(CO)(PPh₃)₂Cl, Ru₃(CO)₁₂ with (CH₃)₃NO, Ru(PPh₃)₃-Cl₂ with NaBH₄, and PPh₃ were all catalytically active. It is interesting to note that even Rh(CO)(PPh₃)₂Cl showed catalytic activity since it can be generated from decarbonylation of aldehyde by **3** (Table 3, run 3).² This result explains that although partial decarbonylation occurred during hydroacylation, the generated Rh(CO)-(PPh₃)₂Cl catalyst still has catalytic hydroacylation activity. When different types of phosphines were tested under the $[(C_8H_{14})_2RhCl]_2$ catalyst, the best result was obtained using tris(p-methylphenyl)phosphine (Table 3, runs 8-12).

In conclusion, this report shows the general direct intermolecular hydroacylation of 1-alkene with aldehyde with the assistance of 2-amino-3-picoline.

Acknowledgment. The support of this research by the Korea Science and Engineering Foundation (Grant No. 961-0306-054-2) and the Ministry of Education (Project No. BSRI-96-3422) is gratefully acknowledged. The authors also acknowledge a Research Grant from Yonsei University.

JO961887D

⁽⁷⁾ All ketones were the reported compounds except **5h**. Spectroscopic data for **5h**: ¹H NMR (300 MHz, CDCl₃, 25 °C, TMS) δ 8.0 (dd, J = 8.3 Hz, 2H, 2.6-Hs in phenyl group), 7.4–7.2 (m, 3H, 3.4,5-Hs in phenyl group), 3.3 (t, J = 7.2 Hz, 2H, α -CH₂ to CO), 3.1 (t, J = 7.3 Hz, 2H, β -CH₂ to CO); ¹³C NMR (72.5 MHz, CDCl₃, 25 °C, TMS) δ 197.7 (CO), 136.2–127.9 (Cs of C₆H₅ and C₆F₅ group), 37.3 (α -C of CO), 17.0 (β -C of CO); IR (neat) 2917, 1692 (CO), 1598, 1515, 1450, 1289, 1204, 1171, 1045, 957, 760, 695 cm⁻¹; MS (70 eV) m/z 300 (31) [M⁺], 181 (5), 105 (100) [PhCO⁺], 77 (86.2) [C₆H₅+]; HRMS calcd for C₁₅H₉OF₅ 300.057356, found 300.057686.

⁽⁸⁾ Intermediates, aldimine ${f 6}$ (R = Ph), and complex 7 were already prepared and characterized in ref 7a.

⁽⁹⁾ Other 2-aminopyridine derivatives have been tested for this reaction, and 2-amino-3-picoline showed the best result. Toluene and THF did not show any large difference in results, but we preferred THF to toluene under mild conditions such as 100 °C.